The Riemann-Roch Theorem

Göttingen Mathematical Institute

Paul Baum
Penn State

9 February, 2017

Five lectures:

1. Dirac operator $\sqrt{ }$
2. Atiyah-Singer revisited \checkmark
3. What is K-homology? \checkmark
4. The Riemann-Roch theorem
5. K-theory for group C^{*} algebras

THE RIEMANN-ROCH THEOREM

1. Classical Riemann-Roch \checkmark
2. Hirzebruch-Riemann-Roch (HRR)
3. Grothendieck-Riemann-Roch (GRR)
4. RR for possibly singular varieties (Baum-Fulton-MacPherson)

REFERENCES

P. Baum, W. Fulton, and R. MacPherson Riemann-Roch for singular varieties Publ. Math. IHES 45: 101-167, 1975.
P. Baum, W. Fulton, and R. MacPherson Riemann-Roch and topological K-theory for singular varieties Acta Math. 143: 155-192, 1979.
P. Baum, W. Fulton, and G. Quart Lefschetz-Riemann-Roch for singular varieties Acta Math. 143: 193-211, 1979.

HIRZEBRUCH-RIEMANN-ROCH

M non-singular projective algebraic variety / \mathbb{C}
E an algebraic vector bundle on M
$\underline{E}=$ sheaf of germs of algebraic sections of E
$H^{j}(M, \underline{E}):=j$-th cohomology of M using \underline{E},
$j=0,1,2,3, \ldots$

LEMMA
For all $j=0,1,2, \ldots \operatorname{dim}_{\mathbb{C}} H^{j}(M, \underline{E})<\infty$.
For all $j>\operatorname{dim}_{\mathbb{C}}(M), \quad H^{j}(M, \underline{E})=0$.

$$
\chi(M, E):=\sum_{j=0}^{n}(-1)^{j} \operatorname{dim}_{\mathbb{C}} H^{j}(M, \underline{E})
$$

$n=\operatorname{dim}_{\mathbb{C}}(M)$

THEOREM[HRR] Let M be a non-singular projective algebraic variety / \mathbb{C} and let E be an algebraic vector bundle on M. Then

$$
\chi(M, E)=(\operatorname{ch}(E) \cup T d(M))[M]
$$

Hirzebruch-Riemann-Roch

Theorem (HRR)

Let M be a non-singular projective algebraic variety / \mathbb{C} and let E be an algebraic vector bundle on M. Then

$$
\chi(M, E)=(\operatorname{ch}(E) \cup T d(M))[M]
$$

EXAMPLE. Let M be a compact complex-analytic manifold. Set $\Omega^{p, q}=C^{\infty}\left(M, \Lambda^{p, q} T^{*} M\right)$ $\Omega^{p, q}$ is the \mathbb{C} vector space of all C^{∞} differential forms of type (p, q) Dolbeault complex

$$
0 \longrightarrow \Omega^{0,0} \longrightarrow \Omega^{0,1} \longrightarrow \Omega^{0,2} \longrightarrow \cdots \longrightarrow \Omega^{0, n} \longrightarrow 0
$$

The Dirac operator (of the underlying Spin ${ }^{c}$ manifold) is the assembled Dolbeault complex

$$
\bar{\partial}+\bar{\partial}^{*}: \bigoplus_{j} \Omega^{0,2 j} \longrightarrow \bigoplus_{j} \Omega^{0,2 j+1}
$$

The index of this operator is the arithmetic genus of M - i.e. is the Euler number of the Dolbeault complex.

Let X be a finite CW complex.
The three versions of K-homology are isomorphic.

$$
K_{j}^{\text {homotopy }}(X) \longleftrightarrow K_{j}(X) \longrightarrow K K^{j}(C(X), \mathbb{C})
$$

homotopy theory K-cycles Atiyah-BDF-Kasparov

$$
j=0,1
$$

Let X be a finite CW complex.
The three versions of K-homology are isomorphic.

$$
K_{j}^{\text {homotopy }}(X) \longleftrightarrow K_{j}(X) \longrightarrow K K^{j}(C(X), \mathbb{C})
$$

homotopy theory K-cycles Atiyah-BDF-Kasparov

$$
j=0,1
$$

X is a finite CW complex.

CHERN CHARACTER

The Chern character is often viewed as a functorial map of contravariant functors :

$$
\begin{aligned}
c h: K^{j}(X) & \longrightarrow \bigoplus_{l} H^{j+2 l}(X ; \mathbb{Q}) \\
j & =0,1
\end{aligned}
$$

Note that this is a map of rings.
X is a finite CW complex.
A more inclusive (and more accurate) view of the Chern character is that it is a pair of functorial maps :

$$
\begin{aligned}
& c h: K^{j}(X) \longrightarrow \bigoplus_{l} H^{j+2 l}(X ; \mathbb{Q}) \\
& c h_{\#}: K_{j}(X) \longrightarrow \bigoplus_{l} H_{j+2 l}(X ; \mathbb{Q})
\end{aligned}
$$

$K_{*}(X)$ is a module over $K^{*}(X)$.
$H_{*}(X ; \mathbb{Q})$ is a module over $H^{*}(X ; \mathbb{Q})$. cap product
The Chern character respects these module structures.

Definition of the Chern character in homology $\quad j=0,1$

$$
\begin{aligned}
& c h_{\#}: K_{j}(X) \longrightarrow \bigoplus_{l} H_{j+2 l}(X ; \mathbb{Q}) \text { covariant } \\
& c h_{\#}(M, E, \varphi):=\varphi_{*}(\operatorname{ch}(E) \cup T d(M) \cap[M]) \\
& \varphi_{*}: H_{*}(M ; \mathbb{Q}) \longrightarrow H_{*}(X ; \mathbb{Q}) \\
& \operatorname{ch}(E) \cup T d(M) \cap[M]:=\text { Poincare dual of } \operatorname{ch}(E) \cup T d(M)
\end{aligned}
$$

$\underline{K_{*}(X) \text { is a module over } K^{*}(X) .}$
Let (M, E, φ) be a K-cycle on X.
Let F be a \mathbb{C} vector bundle on X.
Then:

$$
F \cdot(M, E, \varphi):=\left(M, E \otimes \varphi^{*}(F), \varphi\right)
$$

and the module structure is respected :

$$
c h_{\#}(F \cdot(M, E, \varphi))=\operatorname{ch}(F) \cap \operatorname{ch}{ }_{\#}(M, E, \varphi)
$$

K-theory and K-homology in algebraic geometry

Let X be a (possibly singular) projective algebraic variety $/ \mathbb{C}$.
Grothendieck defined two abelian groups:
$K_{\text {alg }}^{0}(X)=$ Grothendieck group of algebraic vector bundles on X.
$K_{0}^{a l g}(X)=$ Grothendieck group of coherent algebraic sheaves on X.
$K_{\text {alg }}^{0}(X)=$ the algebraic geometry K-theory of X contravariant.
$K_{0}^{\text {alg }}(X)=$ the algebraic geometry K-homology of X covariant.

K-theory in algebraic geometry

$\operatorname{Vect}_{\text {alg }} X=$ set of isomorphism classes of algebraic vector bundles on X.
$\mathrm{A}\left(\operatorname{Vect}_{\text {alg }} X\right)=$ free abelian group with one generator for each element $[E] \in \operatorname{Vect}_{\text {alg }} X$.

For each short exact sequence ξ

$$
0 \rightarrow E^{\prime} \rightarrow E \rightarrow E^{\prime \prime} \rightarrow 0
$$

of algebraic vector bundles on X, let $r(\xi) \in \mathrm{A}\left(\operatorname{Vect}_{\text {alg }} X\right)$ be

$$
r(\xi):=\left[E^{\prime}\right]+\left[E^{\prime \prime}\right]-[E]
$$

K-theory in algebraic geometry

$\mathcal{R} \subset \mathrm{A}\left(\operatorname{Vect}_{\text {alg }}(X)\right)$ is the subgroup of $\mathrm{A}\left(\operatorname{Vect}_{\text {alg }} X\right)$
generated by all $r(\xi) \in \mathrm{A}\left(\right.$ Vect $\left._{\text {alg }} X\right)$.
DEFINITION. $K_{\text {alg }}^{0}(X):=\mathrm{A}\left(\operatorname{Vect}_{\text {alg }} X\right) / \mathcal{R}$
Let X, Y be (possibly singular) projective algebraic varieties $/ \mathbb{C}$. Let

$$
f: X \longrightarrow Y
$$

be a morphism of algebraic varieties.
Then have the map of abelian groups

$$
\begin{aligned}
f^{*}: K_{a l g}^{0}(X) & \longleftarrow K_{a l g}^{0}(Y) \\
{\left[f^{*} E\right] } & \leftarrow[E]
\end{aligned}
$$

Vector bundles pull back. $f^{*} E$ is the pull-back via f of E.

K-homology in algebraic geometry

$\mathcal{S}_{\text {alg }} X=$
set of isomorphism classes of coherent algebraic sheaves on X.
$\mathrm{A}\left(\mathcal{S}_{\text {alg }} X\right)=$ free abelian group with one generator for each element $[\mathcal{E}] \in \mathcal{S}_{\text {alg }} X$.

For each short exact sequence ξ

$$
0 \rightarrow \mathcal{E}^{\prime} \rightarrow \mathcal{E} \rightarrow \mathcal{E}^{\prime \prime} \rightarrow 0
$$

of coherent algebraic sheaves on X, let $r(\xi) \in \mathrm{A}\left(\mathcal{S}_{\text {alg }} X\right)$ be

$$
r(\xi):=\left[\mathcal{E}^{\prime}\right]+\left[\mathcal{E}^{\prime \prime}\right]-[\mathcal{E}]
$$

K-homology in algebraic geometry

$\mathfrak{R} \subset \mathrm{A}\left(\mathcal{S}_{\text {alg }}(X)\right)$ is the subgroup of $\mathrm{A}\left(\mathcal{S}_{\text {alg }} X\right)$ generated by all $r(\xi) \in \mathrm{A}\left(\mathcal{S}_{a l g} X\right)$.
DEFINITION. $K_{0}^{a l g}(X):=\mathrm{A}\left(\mathcal{S}_{\text {alg }} X\right) / \Re$
Let X, Y be (possibly singular) projective algebraic varieties $/ \mathbb{C}$. Let

$$
f: X \longrightarrow Y
$$

be a morphism of algebraic varieties.
Then have the map of abelian groups

$$
\begin{gathered}
f_{*}: K_{0}^{a l g}(X) \longrightarrow K_{0}^{a l g}(Y) \\
{[\mathcal{E}] \mapsto \Sigma_{j}(-1)^{j}\left[\left(R^{j} f\right) \mathcal{E}\right]}
\end{gathered}
$$

$f: X \rightarrow Y$ morphism of algebraic varieties
\mathcal{E} coherent algebraic sheaf on X
For $j \geq 0$, define a presheaf $\left(W^{j} f\right) \mathcal{E}$ on Y by

$$
U \mapsto H^{j}\left(f^{-1} U ; \mathcal{E} \mid f^{-1} U\right) \quad U \text { an open subset of } Y
$$

Then

$$
\left(R^{j} f\right) \mathcal{E}:=\text { the sheafification of }\left(W^{j} f\right) \mathcal{E}
$$

$f: X \rightarrow Y$ morphism of algebraic varieties

$$
\begin{gathered}
f_{*}: K_{0}^{\text {alg }}(X) \longrightarrow K_{0}^{a l g}(Y) \\
{[\mathcal{E}] \mapsto \Sigma_{j}(-1)^{j}\left[\left(R^{j} f\right) \mathcal{E}\right]}
\end{gathered}
$$

SPECIAL CASE of $f_{*}: K_{0}^{a l g}(X) \longrightarrow K_{0}^{a l g}(Y)$
Y is a point. $Y=$.
$\epsilon: X \rightarrow \cdot$ is the map of X to a point.
$K_{\text {alg }}^{0}(\cdot)=K_{0}^{\text {alg }}(\cdot)=\mathbb{Z}$
$\epsilon_{*}: K_{0}^{a l g}(X) \rightarrow K_{0}^{a l g}(\cdot)=\mathbb{Z}$
$\epsilon_{*}(\mathcal{E})=\chi(X ; \mathcal{E})=\Sigma_{j}(-1)^{j} \operatorname{dim}_{\mathbb{C}} H^{j}(X ; \mathcal{E})$

X non-singular $\Longrightarrow K_{\text {alg }}^{0}(X) \cong K_{0}^{\text {alg }}(X)$

Let X be non-singular.
Let E be an algebraic vector bundle on X.
\underline{E} denotes the sheaf of germs of algebraic sections of E.
Then $E \mapsto \underline{E}$ is an isomorphism of abelian groups

$$
K_{a l g}^{0}(X) \longrightarrow K_{0}^{a l g}(X)
$$

This is Poincaré duality within the context of algebraic geometry K-theory\&K-homology.

X non-singular $\Longrightarrow K_{\text {alg }}^{0}(X) \cong K_{0}^{\text {alg }}(X)$

Let X be non-singular.
The inverse map

$$
K_{0}^{\text {alg }}(X) \rightarrow K_{a l g}^{0}(X)
$$

is defined as follows.
Let \mathcal{F} be a coherent algebraic sheaf on X.
Since X is non-singular,
\mathcal{F} has a finite resolution by algebraic vector bundles.

X non-singular $\Longrightarrow K_{\text {alg }}^{0}(X) \cong K_{0}^{\text {alg }}(X)$

\mathcal{F} has a finite resolution by algebraic vector bundles.
i.e. \exists algebraic vector bundles on $X \quad E_{r}, E_{r-1}, \ldots, E_{0}$ and an exact sequence of coherent algebraic sheaves

$$
0 \rightarrow \underline{E_{r}} \rightarrow \underline{E_{r-1}} \rightarrow \ldots \rightarrow \underline{E_{0}} \rightarrow \mathcal{F} \rightarrow 0
$$

Then $K_{0}^{\text {alg }}(X) \rightarrow K_{\text {alg }}^{0}(X)$ is

$$
\mathcal{F} \mapsto \Sigma_{j}(-1)^{j} E_{j}
$$

Grothendieck-Riemann-Roch

Theorem (GRR)

Let X, Y be non-singular projective algebraic varieties \mathbb{C}, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{gathered}
K_{a l g}^{0}(X) \longrightarrow K_{a l g}^{0}(Y) \\
\operatorname{ch}() \cup T d(X) \quad \downarrow \\
H^{*}(X ; \mathbb{Q}) \longrightarrow H^{*}(Y ; \mathbb{Q})
\end{gathered}
$$

WARNING!!!

The horizontal arrows in the GRR commutative diagram

$$
\begin{array}{cc}
K_{a l g}^{0}(X) & \longrightarrow K_{a l g}^{0}(Y) \\
\operatorname{ch}() \cup T d(X) \quad \downarrow & \downarrow \quad \operatorname{ch}() \cup T d(Y) \\
H^{*}(X ; \mathbb{Q}) & \longrightarrow H^{*}(Y ; \mathbb{Q})
\end{array}
$$

are wrong-way (i.e. Gysin) maps.

$$
\begin{gathered}
K_{a l g}^{0}(X) \cong K_{0}^{a l g}(X) \xrightarrow{f_{*}} K_{0}^{a l g}(Y) \cong K_{a l g}^{0}(Y) \\
H^{*}(X ; \mathbb{Q}) \cong H_{*}(X ; \mathbb{Q}) \xrightarrow{f_{*}} H_{*}(Y ; \mathbb{Q}) \cong H^{*}(Y ; \mathbb{Q})
\end{gathered}
$$

Poincaré duality
Poincaré duality

Riemann-Roch for possibly singular complex projective algebraic varieties

Let X be a (possibly singular) projective algebraic variety / \mathbb{C}
Then (Baum-Fulton-MacPherson) there are functorial maps
$\alpha_{X}: K_{\text {alg }}^{0}(X) \longrightarrow K_{\text {top }}^{0}(X) \quad K$-theory \quad contravariant natural transformation of contravariant functors

$$
\begin{array}{r}
\beta_{X}: K_{0}^{\text {alg }}(X) \longrightarrow K_{0}^{\text {top }}(X) \quad K \text {-homology covariant } \\
\text { natural transformation of covariant functors }
\end{array}
$$

Everything is natural. No wrong-way (i.e. Gysin) maps are used.
$\alpha_{X}: K_{\text {alg }}^{0}(X) \longrightarrow K_{\text {top }}^{0}(X)$
is the forgetful map which sends an algebraic vector bundle E to the underlying topological vector bundle of E.

$$
\alpha_{X}(E):=E_{\text {topological }}
$$

Let X, Y be projective algebraic varieties $/ \mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{array}{cc}
K_{a l g}^{0}(X) & \longleftarrow K_{a l g}^{0}(Y) \\
\alpha_{X} \downarrow & \downarrow \alpha_{Y} \\
K_{t o p}^{0}(X) \longleftarrow K_{t o p}^{0}(Y)
\end{array}
$$

i.e. natural transformation of contravariant functors

Let X, Y be projective algebraic varieties $/ \mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{array}{rr}
K_{\text {alg }}^{0}(X) & \longleftarrow K_{\text {alg }}^{0}(Y) \\
\alpha_{X} \downarrow & \downarrow \alpha_{Y} \\
K_{\text {top }}^{0}(X) & \longleftarrow K_{\text {top }}^{0}(Y) \\
c h \downarrow & \downarrow c h \\
H^{*}(X ; \mathbb{Q}) & \longleftarrow H^{*}(Y ; \mathbb{Q})
\end{array}
$$

Let X, Y be projective algebraic varieties $/ \mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{array}{rr}
K_{0}^{a l g}(X) & \longrightarrow K_{0}^{a l g}(Y) \\
\beta_{X} \downarrow & \downarrow \beta_{Y} \\
K_{0}^{t o p}(X) & \longrightarrow K_{0}^{t o p}(Y)
\end{array}
$$

i.e. natural transformation of covariant functors

Notation. $K_{*}^{t o p}$ is K-cycle K-homology.

Let X, Y be projective algebraic varieties $/ \mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{array}{rr}
K_{\text {alg }}^{0}(X) & \longleftarrow K_{\text {alg }}^{0}(Y) \\
\alpha_{X} \downarrow & \downarrow \alpha_{Y} \\
K_{\text {top }}^{0}(X) & \longleftarrow K_{\text {top }}^{0}(Y) \\
c h \downarrow & \downarrow c h \\
H^{*}(X ; \mathbb{Q}) & \longleftarrow H^{*}(Y ; \mathbb{Q})
\end{array}
$$

Let X, Y be projective algebraic varieties $/ \mathbb{C}$, and let $f: X \longrightarrow Y$ be a morphism of algebraic varieties. Then there is commutativity in the diagram :

$$
\begin{array}{cr}
K_{0}^{a l g}(X) & \longrightarrow K_{0}^{a l g}(Y) \\
\beta_{X} \downarrow & \downarrow \beta_{Y} \\
K_{0}^{t o p}(X) & \longrightarrow K_{0}^{t o p}(Y) \\
c h_{\#} \downarrow & \downarrow c h_{\#} \\
H_{*}(X ; \mathbb{Q}) \longrightarrow & H_{*}(Y ; \mathbb{Q})
\end{array}
$$

Definition of $\beta_{X}: K_{0}^{\text {alg }}(X) \rightarrow K_{0}^{t o p}(X)$

Let \mathcal{F} be a coherent algebraic sheaf on X.
Choose an embedding of projective algebraic varieties

$$
\iota: X \hookrightarrow W
$$

where W is non-singular.
$\iota_{*} \mathcal{F}$ is the push forward (i.e. extend by zero) of \mathcal{F}. $\iota_{*} \mathcal{F}$ is a coherent algebraic sheaf on W.
$\iota_{*} \mathcal{F}$ is a coherent algebraic sheaf on W.
Since W is non-singular, $\iota_{*} \mathcal{F}$ has a finite resolution by algebraic vector bundles.

$$
0 \rightarrow \underline{E_{r}} \rightarrow \underline{E_{r-1}} \rightarrow \ldots \rightarrow \underline{E_{0}} \rightarrow \iota_{*} \mathcal{F} \rightarrow 0
$$

Consider

$$
0 \rightarrow E_{r} \rightarrow E_{r-1} \rightarrow \ldots \rightarrow E_{0} \rightarrow 0
$$

These are algebraic vector bundles on W and maps of algebraic vector bundles such that for each $p \in W-\iota(X)$ the sequence of finite dimensional \mathbb{C} vector spaces

$$
0 \rightarrow\left(E_{r}\right)_{p} \rightarrow\left(E_{r-1}\right)_{p} \rightarrow \ldots \rightarrow\left(E_{0}\right)_{p} \rightarrow 0
$$

is exact.

Choose Hermitian structures for $E_{r}, E_{r-1}, \ldots, E_{0}$ Then for each vector bundle map

$$
\sigma: E_{j} \rightarrow E_{j-1}
$$

there is the adjoint map

$$
\begin{gathered}
\sigma^{*}: E_{j} \leftarrow E_{j-1} \\
\sigma \oplus \sigma^{*}: \bigoplus_{j} E_{2 j} \longrightarrow \bigoplus_{j} E_{2 j+1}
\end{gathered}
$$

is a map of topological vector bundles which is an isomorphism on $W-\iota(X)$.

Let Ω be an open set in W with smooth boundary $\partial \Omega$ such that $\bar{\Omega}=\Omega \cup \partial \Omega$ is a compact manifold with boundary which retracts onto $\iota(X) . \bar{\Omega} \rightarrow \iota(X)$.
Set

$$
M=\bar{\Omega} \cup_{\partial \Omega} \bar{\Omega}
$$

M is a closed Spin ${ }^{c}$ manifold which maps to X by:

$$
\varphi: M=\bar{\Omega} \cup_{\partial \Omega} \bar{\Omega} \rightarrow \bar{\Omega} \rightarrow \iota(X)=X
$$

On $M=\bar{\Omega} \cup_{\partial \Omega} \bar{\Omega}$ let E be the topological vector bundle

$$
E=\bigoplus_{j} E_{2 j} \cup_{\left(\sigma \oplus \sigma^{*}\right)} \bigoplus_{j} E_{2 j+1}
$$

Then $\beta_{X}: K_{0}^{a l g}(X) \rightarrow K_{0}^{t o p}(X)$ is :

$$
\begin{gathered}
\mathcal{F} \mapsto(M, E, \varphi) \\
M=\bar{\Omega} \cup_{\partial \Omega} \bar{\Omega}
\end{gathered}
$$

$\underline{\text { Equivalent definition of } \beta_{X}: K_{0}^{a l g}(X) \rightarrow K_{0}^{t o p}(X)}$

Let (M, E, φ) be an algebraic K-cycle on X, i.e.

- M is a non-singular complex projective algebraic variety.

■ E is an algebraic vector bundle on M.

- $\varphi: M \rightarrow X$ is a morphism of projective algebraic varieties.

Then:

$$
\beta_{X}\left(\varphi_{*}(\underline{E})\right)=(M, E, \varphi)_{\text {topological }}
$$

Module structure

$K_{\text {alg }}^{0}(X)$ is a ring and $K_{0}^{\text {alg }}(X)$ is a module over this ring. $\alpha_{X}: K_{\text {alg }}^{0}(X) \rightarrow K_{\text {top }}^{0}(X)$ is a homomorphism of rings. $\beta_{X}: K_{0}^{\text {alg }}(X) \rightarrow K_{0}^{t o p}(X)$ respects the module structures.

Todd class
Set

$$
\operatorname{td}(X)=\operatorname{ch}_{\#}\left(\beta_{X}\left(\mathcal{O}_{X}\right)\right) \quad \operatorname{td}(X) \in H_{*}(X ; \mathbb{Q})
$$

If X is non-singular, then $\operatorname{td}(X)=\operatorname{Todd}(X) \cap[X]$.
With X possibly singular and E an algebraic vector bundle on X

$$
\chi(X, \underline{E})=\epsilon_{*}(\operatorname{ch}(E) \cap \operatorname{td}(X))
$$

$\epsilon: X \rightarrow$. is the map of X to a point.
$\epsilon_{*}: H_{*}(X ; \mathbb{Q}) \rightarrow H_{*}(\cdot ; \mathbb{Q})=\mathbb{Q}$

Let

be resolution of singularities in the sense of Hironaka.
$\pi_{*}: H_{*}(\widetilde{X} ; \mathbb{Q}) \rightarrow H_{*}(X ; \mathbb{Q})$
Lemma. $\pi_{*}(T d(\widetilde{X}) \cap[\widetilde{X}])$ is intrinsic to X i.e. does not depend on the choice of the resolution of singularities.
$t d(X) \in H_{*}(X: \mathbb{Q})$ is also intrinsic to X.
$t d(X)-\pi_{*}(T d(\tilde{X}) \cap[\tilde{X}])$ is given by a homology class on X which (in a canonical way) is supported on the singular locus of X.

Problem. In examples calculate $t d(X) \in H_{*}(X ; \mathbb{Q})$.
For toric varieties see papers of J. Shaneson and S. Cappell.

