
Bringing DFG Project Nr. 322463161 to the Web
A Documentation

Eduard S. Lukasiewicz

under the supervision of

apl. Prof. Dr. Sascha Gaglia

September 30, 2020

Contents
0 General Information about the Project . 1

1 Introduction . 2

2 RhoSquared . 3
2.1 Preliminaries . 3
2.2 Running the Script . 3

3 Known Issues . 7

4 Future Developments . 8

Attention! This document is being constantly updated, so it is possible that the reader will
not find exactly the same content each time it is consulted. Old versions of this document
are stored in an online repository accessible via the following link: |—ADDLINK—|.

0 General Information about the Project

This is a documentation of the creation and deployment of a database created as part of the
project Temporal analysis and modelling of the paradigmatic extension of French and Italian
verbal roots. Said project was made feasible by a grant of the DFG (i.e. German Research
Foundation) to apl. Prof. Dr. Sascha Gaglia, who led the project from start to finish. Acknow-
ledged be the contribution of the following individuals to the project (the order is chronological
and thus does not imply anything with respect to the magnitude of the individual’s contribution):

1

https://gepris.dfg.de/gepris/projekt/322463161?language=en
https://gepris.dfg.de/gepris/projekt/322463161?language=en

Manuel Möll

Noel Seger

Pascal Hornbergs

Eduard S. Lukasiewicz

Apart from a set of publications authored by apl. Prof. Dr. Sascha Gaglia, the project involved
the construction of a database of diachronic morphological verb forms of Old French and Old
Italian. The data come from Frantext1, the NCA2 and OVI3, which are also duly cited at the
end of this section.The main goal of this file is to document the final phases of this process and
to keep track of new developments in the corpus or in the interface. Consequently, we expect
it to be updated regularly in the foreseeable future. Before starting to work with the tools we
created, the user should make sure to be up-to-date with the newest developments in the project.
The most important update will be exiting beta, which we will probably announce by the end
of 2020. We therefore suggest any interested user to watch our GitHub repository: |–LINK–|.
There is however no obligation on our side to do maintenance on the code or improve on it and
we may drop any further development whenever we deem it necessary.

1 Introduction

The final digital output of the project consists of the following elements:

a. FRITAV: This is the actual corpus. We opted for PostgreSQL as its database management
system as it is free and open source software (henceforth FOSS) and also because of its
excellent interfacing possibilities. The version we used is 12.4 and during development
we worked with pgAdmin 4 v4.25 and v4.26 for data clean-up.

b. RhoSquared: This is the interface to the corpus. At the moment of writing (30.09.2020),
it consists solely of a command line script written in Python 3.8.2 which accepts simple
query strings and outputs the corpus data in a browser window (the internal workings
of RhoSquared are discussed in Section 2). It is hosted on GitHub4 and is currently
distributed under the MIT license, meaning that it is also FOSS. The script is in its beta
version and still requires massive refactoring. A personal (albeit much far away) end goal
for RhoSquared is an extensible open-source interface for linguistic databases.

1FI/FMF = Base textuell FRANTEXT, ATILF-CNRS & Université de Lorraine.
2NCA = Stein, Achim et al. (2006): Nouveau Corpus d’Amsterdam. Corpus informatique de textes littéraires
d’ancien français (ca 1150-1350), établi par Anthonij Dees (Amsterdam 1987), remanié par Achim Stein, Pierre
Kunstmann et Martin-D. GleSSgen. Stuttgart: Institut für Linguistik/Romanistik, version 3.

3OVI = Larson, P. & E. Artale (2005). Corpus OVI dell’italiano antico. Firenze: CNR/Instituto Opera del Vocabo-
lario Italiano.

4https://github.com/fritav/rhosqrd

2

https://www.frantext.fr/
https://sites.google.com/site/achimstein/research/resources/nca
http://gattoweb.ovi.cnr.it/(S(fblmlaxuzn4qwxjvwddizpjp))/CatForm01.aspx
https://www.postgresql.org
https://www.postgresql.org/docs/12/release-12-4.html
https://www.pgadmin.org/
https://www.pgadmin.org/docs/pgadmin4/4.25/release_notes_4_25.html
https://www.pgadmin.org/docs/pgadmin4/4.26/release_notes_4_26.html
https://www.python.org/downloads/release/python-382/
https://github.com/fritav/rhosqrd

2 RhoSquared

2.1 Preliminaries

The name RhoSquared derives from the code name I gave to our project when I joined in,
i.e. rhemarhizai, which is Ancient Greek for ’verbal roots’. Going a little bit deeper than
above, RhoSquared is a lightweight command line-browser-based GUI hybrid program written
in Python communicating with the FRITAV server with the help of SQLAlchemy 1.3.19. Let
me unwrap this:

1. command line-GUI hybrid: A command line application is designed for being used in a
terminal, whereas a web-based graphical user interface (GUI) allows for communication
with the code via a window in virtually any common browser. I say hybrid as it is a com-
mand line tool which uses a simple browser-based GUI (a.k.a. dashboard) to visualize
query results. The tool we are using to this end is tabloo by Fabian Keller. A full GUI
version is planned for the future.

2. Python: Python is a highly flexible scripting language with a relatively gentle learning
curve. It is widely used both in industry and academy and remains one of the most popular
language. The version RhoSquared is written in is 3.8.2.

3. SQLAlchemy: In order to work with a database you need to be able to communicate
with it, and this is what SQLAlchemy does. It allows for a smooth integration of database
functionalities into Python. In RhoSquared it plays a small role, albeit an important one.

2.2 Running the Script

In its current version (Beta), the best way to run RhoSquared is in a terminal (for the sake
of conciseness I refer to Command Prompt and any Bash shell as ‘terminal’ whenever it does
not make a difference with respect to the command input)5, as cross-platform compatibility
is a problem yet to be addressed.6 In the foreseeable future it will be deployed as a Docker
container7, allowing for a more user-friendly installation.

The following walk-through considers Windows (Windows 10 - 64 bit), Mac (Mac OS 10.14.6)
and Linux (Ubuntu 18.04).

Before doing anything, please check your Python version by entering the following command
in a terminal:

▷ python --version

RhoSquared was developed in a Python 3.8.2 environment. As there might discrepancies be-
tween any Python 2.x version (which possibly came pre-installed) and Python 3, I suggest to
5If you do not know how to open a terminal window on your machine (nor what is meant by ‘terminal window’)
please look it up, as a good understanding of how a terminal works is crucial for a smooth interaction with a
command-line script such as RhoSquared.

6The script has been developed and tested on Windows 10 - 64 bit.
7I refer the curious reader to https://www.docker.com/resources/what-container.

3

https://www.sqlalchemy.org/
https://github.com/bluenote10/tabloo
https://www.docker.com/resources/what-container

install the latter before trying to run the script. In order to install it on Windows please go to
https://www.python.org/downloads/ and download the latest release. If you are working
on a Unix machine, please consult this guide for Mac and this one for Linux.

Next, let us install all the dependencies. These are saved in the file requirements.txt. Before
running pip on it (we will come to it shortly), be sure that you are in a virtual environment.
Creating a virtual environment ensures that the directory is isolated from the rest of the Python
installation, thus keeping your base environment safe from version clashes and the like. If you
do not know how to setup a virtual environment please consult https://docs.python.org/
3/tutorial/venv.html8. Once you have created a virtual environment and after activating it
(see link in Footnote 8), navigate to the script folder, open a terminal there and enter:

▷ pip install -r requirements.txt

Now you are setup to run rhosqrd.py (while remaining in the same virtual environment, of
course!). When you run rhosqrd.py, a prompt will open (see Figure 1). Via that prompt you
can a) initialize a new query environment (init qenv), b) ask for help (help) or c) exit (exit).
More features are planned for future releases, but for now this is all it can interpret. The main
design principles we have followed while developing RhoSquared are clarity and ease of use,
thus minimizing the time spent learning how to use it, and this is reflected in its minimalism.

Figure 1: The initial prompt of RhoSquared

By typing init qenv in the initial prompt a new query environment is initialized. This is where
all the queries are processed before being sent to another module for visualization in a browser
window. Upon initializing a new query environment the user is prompted to submit a query in
the form of a string, as shown in Figure 2.

8Attention! If you do not have already, you first need to install it.

4

https://www.python.org/downloads/
https://docs.python-guide.org/starting/install3/osx/
https://docs.python-guide.org/starting/install3/linux/
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

Figure 2: Initializing a new query environment.

The language of query strings, also called query language, is quite rudimentary, but using it
requires knowing the corpus tags’ format. This is given in Table 1 on the next page with a
description for each tag. Now we can define the query language accepted by the query environ-
ment of RhoSquared. The set of well-formed (or valid) query strings is defined recursively:

1. Given a tag X and any UTF-8 string a containing only letters, numbers, commas or
round/square brackets, X = a is a query atom.

2. Given a set of query atoms X = {(Xi,ai) : Xi = ai}, any combination of the elements of X
by means of “&” is a query string.

For example, the string

▷ writers_dialect=champenois

will return all entries whose writer’s dialect has been recognized as Champenois, whereas

▷ writers_dialect=champenois & m_phenom=Diphthong

will return the intersection of the set defined by the query string above with that of the en-
tries whose identified morphological phenomenon is diphthongization. The format for temporal
query atoms (i.e. query atoms X = a where X is a temporal tag, referring here to comp_dates
and manuscr_dates) is somewhat idiosyncratic, in that e.g. in order to query for those entries
whose date(s) of composition fall(s) between 1300 and 1350, one needs to type

▷ comp_dates=(1300, 1350)

The limits are set within round brackets and they are always exclusive. For inclusive limits type

▷ comp_dates=[1300, 1350]

instead. The brackets can be mixed so as to represent clopen intervals.

5

https://en.wikipedia.org/wiki/Clopen_set

lang Language: Has only two values, French and Italian.

lemma_mod Modern Lemma: The item’s corresponding lemma in the modern
languages.

lemma_nca NCA Lemma: The item’s lemma as found in the NCA.

verb_form_dia Diachronic Verb Form: The actual item in the respective corpora.

verb_form_mod Modern Verb Form: The item’s corresponding form in the mo-
dern languages.

stem Stem: Self-explanatory.

pos_m_features Position of Morphological Features: The item’s formal morpho-
logical aspects.

pos_m_features_alt Alternative Position of Morphological Features: An alternative
to the above.

orthogr_con Orthographic Context: The graphemic context of the item.

m_phenom Morphological Phenomenon: The morphological phenomenon
affecting the item.

db_hit Database Hit: The encoding of the query result in the correspon-
ding databases.

comp_dates
Date(s) of Composition: Self-explanatory. The bracketed plural
marked in date(s) hints at the fact that some text cannot be dated
precisely.

comp_loc Locus of Composition: The area or place where the item’s text
originated.

manuscr_dates
Date(s) of Manuscript Composition: The date(s) of the composi-
tion of the manuscript in which the text is preserved. Not available
for Italian data.

manuscr_loc Locus of Manuscript Composition: Parallel to above.

writers_dialect Writer’s Dialect: The dialect of the item’s text. Not available for
Italian data.

reg_codes_dees Regional Codes (Dees): The item’s encoding according to Dees.

tok_sentence Token Sentence: The item’s syntactic context.

verses Verses: Yes/No value depending on whether the item’s text is in
verse form.

genres Literary Genre: Self-explanatory.

comment Comment: Self-explanatory.

contrib Contributor: A code corresponding to the person who added the
item’s entry to the database.

Table 1: The corpus tags and their meanings.

6

To return all entries whose date(s) of composition fall(s) before or after any given date, use

▷ comp_dates=(0, 1350) and

▷ comp_dates=(1300, 0)

respectively, while still respecting the conventions mentioned above. Warning! In the current
version every query string may contain one and only one temporal query atom. This will be
changed before exiting beta testing.

When you submit a query such as

▷ m_phenom=Diphthong & comp_dates=(0, 1200)

a window will open in the user’s default browser and it will look like Figure 3 below.

Figure 3: The query results visualized in tabloo.

The window will remain open and you will be able to submit a new query, which will gener-
ate a new window, and so on until you type exit qenv in the query environment prompt (or
force quit, although I strongly advise against it!). In fact, the windows will remain open even
after quitting the script, although the threads on which the corresponding processes are running
will close as they are instantiated as daemons. This was the easiest solution given the short
development time. In a future version, threading will be factored out.

3 Known Issues

In random order:

• Valid Query Strings: There is no robust method for differentiating well-formed query
strings from any other string. We are planning to implement a DFA to take care of that.

7

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

• Complexity: The script is not optimized at all and requires reworking, e.g. directly
querying FRITAV instead of querying copies of each table. At the moment of writing
(30.09.2020), this is not a problem as the database does not contain more that 10.000
verb forms, but it will be the moment we decide to grow it.

• Temporal Expressions: Queries which include temporal tags are quite fragile. This
needs to be reworked completely.

4 Future Developments

This section is still empty and will be added in the coming weeks.

8

	General Information about the Project
	Introduction
	RhoSquared
	Preliminaries
	Running the Script

	Known Issues
	Future Developments

