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ABSTRACT

Aim Spatial environmental heterogeneity (EH) is an important driver of species
richness, affecting species coexistence, persistence and diversification. EH has been
widely studied in ecology and evolution and quantified in many different ways,
with a strong bias towards a few common measures of EH like elevation range.
Here, we calculate 51 measures of EH within grid cells world-wide across three
spatial grains to investigate similarities and differences among these measures.
Moreover, we compare the association between species richness of terrestrial
mammals and each EH measure to assess the impact of methodological choices
on EH–richness relationships found by standard macroecological modelling
approaches.

Location Global.

Methods We derive 51 measures of EH from nine variables related to the five
subject areas land cover, vegetation, climate, soil and topography, using nine cal-
culation methods. We first explore differences among these EH measures with
correlation and principal components analyses. We then analyse the relationship
between mammal species richness and each EH measure alone and while account-
ing for effects of current climate, regional biogeographic history and human influ-
ence. We assess the impact of subject area and method of calculation of EH
measures on model support using conditional inference trees.

Results Despite some redundancy, correlations (rs = −0.45 to 1.00, median
0.35) and spatial patterns indicate clear differences between the EH measures.
We find clear effects of subject area and calculation method on the importance of
EH measures for mammal species richness. Measures of climatic and topographic
EH and measures calculated as counts and ranges (as against, for example, coef-
ficient of variation) receive particularly high model support across all spatial
grains.

Main conclusions The outcome of broad-scale EH–richness studies is greatly
determined by methodological decisions on calculation of measures and statistical
analysis. These decisions should therefore be made carefully with regard to the
hypothesis and mechanism of interest.
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INTRODUCTION

Spatial environmental heterogeneity (EH) is an important

determinant of species richness world-wide (Tews et al., 2004;

Stein et al., 2014). EH is thought to enhance species richness

through three mechanisms, involving ecological, historical and

evolutionary aspects: (1) increased variation in resources, struc-

tural complexity or environmental conditions should increase

available niche space and thereby promote species coexistence

(Tews et al., 2004); (2) increased EH should enhance species

persistence by providing shelter and refuges from adverse envi-

ronmental conditions like glaciations (Svenning & Skov, 2007);

(3) increased EH should increase the probability of species

diversification through isolation or adaptation to diverse

environmental conditions (Hughes & Eastwood, 2006).

The effect of EH on species richness through these mecha-

nisms is difficult to assess, as EH cannot be measured in any

single, straightforward way. In fact, EH has been quantified by

many different measures related to land cover, vegetation,

climate, soil and topography (henceforth called subject areas).

Measures of EH have mostly been calculated as ranges (e.g.

elevation range), counts and indices (e.g. the number or

Simpson index of land-cover types), but other calculation

methods like percentage and standard deviation (e.g. percentage

of forest cover; standard deviation of soil pH) have also been

used. More than 160 measures, with many variations, exist in the

literature (Stein & Kreft, 2014). Because of their different calcu-

lation methods and underlying data, these measures represent

different aspects of EH. For instance, range measures capture the

length of environmental gradients, and may relate to spatial

turnover of species with different environmental requirements.

The most frequently used range measure, elevation range, is a

broad proxy not only for climatic gradients and habitat turnover

but also for refugial opportunities and isolation and diversifica-

tion probabilities (Kallimanis et al., 2010). Index measures

contain information about the variability or configuration of

environmental variables within study units. For instance, foliage

height diversity or plant species diversity have been used to

quantify structural complexity and diversity of vegetation as

proxies for resource diversity and availability of resting, hiding

and breeding sites (e.g. MacArthur & MacArthur, 1961). Indices

of topographic EH considering slope, aspect or ruggedness

relate more to microclimatic and edaphic conditions like inso-

lation, wind exposure and drainage, and may thereby also refer

to the availability of resting and foraging sites (Bouchet et al.,

2014). The relevance of EH measures to species richness also

depends on spatial scale – measures of vegetation structure, for

instance, are expected to be more useful at smaller scales, where

niche differentiation and biotic interactions play larger roles. At

larger scales, climatic and topographic measures of EH related to

turnover and isolation should be more relevant (Rahbek &

Graves, 2001; Field et al., 2009).

EH–richness research is biased regarding the use of EH

measures, as most studies use only few common measures such

as elevation range and the number or diversity of land-cover

types (reviewed in Stein & Kreft, 2014). While these measures

are often easily available, they may miss important aspects of

EH captured by other methods of calculation. Here we calcu-

late a series of EH measures across three spatial grains world-

wide, which cover different dimensions of biotic and abiotic

EH by representing different calculation methods and all five

subject areas (used in Stein & Kreft, 2014). We investigate the

variability of these measures using correlation and ordination

techniques and test how measures of EH vary in their associa-

tion with terrestrial mammal species richness (see Fig. 1 for the

study design). We are particularly interested in the impact of

subject area and method of calculation of EH measures on

study outcomes.

METHODS

Environmental data

Variables used for measures of EH

We derived EH measures representing five subject areas from

nine variables thought to affect vertebrate species richness (e.g.

Kerr & Packer, 1997; Fraser, 1998; Qian & Kissling, 2010).

1. Land-cover EH representing spatial turnover in environmen-

tal conditions: (a) land-cover classes (GLC; JRC, 2003); (b)
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Figure 1 Schematic overview of the study design. Using nine
variables and up to nine calculation methods per variable, we
computed 51 environmental heterogeneity (EH) measures
world-wide. Measure calculation and analyses were conducted
within equal-area grid cells at three spatial grains (approximately
111 km × 111 km, 222 km × 222 km, and 444 km × 444 km). We
(1) investigated the similarities among EH measures with
correlation and principal component analysis (PCA), and (2)
assessed the differences between EH measures in their association
with species richness with ordinary least squares (OLS) and
simultaneous autoregressive (SAR) models and conditional
inference trees, using terrestrial mammals as case study.
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annual net primary production (NPP; 0.1 g C m−2; averaged

over 2000–12; Zhao & Running, 2010).

2. Vegetation EH as proxy for vegetation structure and resource

diversity: (a) vascular plant species richness based on kriging

interpolation (PLA; Kreft & Jetz, 2007); (b) canopy height

(VEG; m; Simard et al., 2011).

3. Climatic EH representing turnover in energy and water: (a)

annual mean temperature (TEM; K; Hijmans et al., 2005); (b)

annual precipitation (PRE; mm; Hijmans et al., 2005); (c) mean

annual potential evapotranspiration (PET; mm; Trabucco &

Zomer, 2009).

4. Soil EH representing direct effects and indirect effects

through vegetation: major soil groups (SOI; FAO/IIASA/ISRIC/

ISSCAS/JRC, 2012).

5. Topographic EH as proxy for climatic gradients, habitat turn-

over and isolation probabilities: elevation (ELE; m a.s.l.; shifted

to ≥ 0 by adding the absolute of the minimum, 431 m; Hijmans

et al., 2005).

All variables were resolved at 30 arcsec (approximately 1 km

at the equator), except for PLA, which was resolved at approxi-

mately 111 km, the finest grain used in our analysis.

Calculation of EH measures

We calculated EH measures for global equal-area grid cells of

12,364 km2 (approximately 111 km × 111 km at the equator).

To evaluate the influence of spatial grain on EH–richness rela-

tionships, we also calculated all measures at two coarser grains,

i.e. grid cells of 49,457 km2 (approximately 222 km × 222 km at

the equator) and 197,829 km2 (approximately 444 km × 444 km

at the equator). PLA was the only exception; because area and

species richness are not linearly related, to avoid additional

assumptions we calculated PLA for the two coarser grains as

mean plant species richness per grid cell based on the values at

the finest grain. We focus on analyses at the 111-km grain, unless

stated otherwise.

We applied nine calculation methods, chosen to capture dif-

ferent aspects of EH. For the categorical variables, GLC and SOI,

we calculated three EH measures each: count (co; number

of classes), Simpson index (si = 1 – D, where D = Σpi
2, with pi

being the proportion of the ith class) and Shannon entropy

(sh = –Σpi ln pi). Higher EH estimated in this way is expected to

promote spatial turnover of species with different habitat

requirements. We also calculated these measures for continuous

variables (NPP, VEG, TEM, PRE, PET, ELE) after classifying each

variable into 50 equal-interval classes. To avoid spatial bias in

these measures due to artificial class breaks, we shifted the

breaks up and down seven times each (resulting in original

breaks and seven up-shifted and seven down-shifted breaks).

For each set of breaks, we recomputed the respective EH

measure, and then used the mean of these 15 outcomes for

analysis. Furthermore, we calculated the following measures for

continuous variables: range (ra; max.–min.), standard deviation

(sd), coefficient of variation (cv; set to zero for zero mean) and

terrain ruggedness index (tr; mean per grid cell of the mean of

absolute differences between the value of a pixel and the values

of its eight neighbouring pixels; Riley et al., 1999). While ra

measures cover the lengths of environmental gradients, the sd,

cv and tr measures capture variability among sampling units. Tr

is a proxy of terrain heterogeneity, designed to approximate

structural attributes like cover for prey or predators (Riley et al.,

1999). For VEG, we additionally calculated the mean (me) and

maximum (ma) canopy height, whereas we used PLA as an EH

measure as it stands. We calculated 51 EH measures in total

(Fig. 1), using R (R Core Team, 2013) and the packages

maptools, raster, rgdal, rgeos and vegan (Bivand et al., 2013;

Bivand & Lewin-Koh, 2013; Oksanen et al., 2013; Bivand &

Rundel, 2014; Hijmans, 2014).

Further covariables

It is well documented that the species richness of terrestrial

vertebrates strongly depends on current climate, particularly

water and energy availability (e.g. Hawkins et al., 2003; Qian,

2010). We therefore chose three climate variables known to

affect broad-scale mammal richness (e.g. Qian, 2010; Davies

et al., 2011) to be accounted for in EH–species richness models,

namely TEM, PRE and annual actual evapotranspiration (AET;

mm; Ahn & Tateishi, 1994), which represents water–energy

dynamics and is a proxy for productivity. For each variable, we

calculated the mean per grid cell. AET was resolved at 30 arcmin

only and was first disaggregated to 1 km. As AET and PRE were

highly correlated (rs = 0.93), we only included AET in our

models, it being the most important predictor of mammal rich-

ness in several studies (Ruggiero & Kitzberger, 2004; Qian, 2010;

Davies et al., 2011). To account for regional and historical effects

on mammal richness (see Hortal et al., 2008), we also included

seven mammalian biogeographic regions (REG; Kreft & Jetz,

2010) in our models. Finally, we included the global human

influence index (HII) to account for anthropogenic impacts

(Sanderson et al., 2002; WCS & CIESIN, 2005).

Mammal data

We used range maps for 5282 terrestrial mammal species

(IUCN, 2013), including historical ranges of (probably) extant

and (possibly) extinct species and species with uncertain pres-

ence. We excluded introduced and vagrant species and species of

uncertain origin. We calculated species richness for each grain as

the number of ranges overlapping in each grid cell.

Statistical analysis

Many measures of EH correlate with area, impeding separation

of the effects of EH and area per se (Triantis et al., 2003; Stein

et al., 2014). We therefore aimed to keep the area of study units

constant by excluding coastal cells and large inland water

bodies. At the finest grain this left 8914 grid cells for which all

environmental variables were available. The analyses conducted

at the two coarser grains were based on 2003 and 399 grid cells,

respectively.

A. Stein et al.
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We explored the similarity among EH measures using Spear-

man rank correlation and principal components analysis (PCA).

As many EH measures were correlated, we analysed their effects

on mammal richness in separate models. We first ran simple

ordinary least squares (OLS) regressions between each EH

measure and mammal richness. We also ran multi-predictor

OLS models between each EH measure and mammal richness,

adding AET, TEM, HII and REG as covariables. We compared

these models with a model that included only AET, TEM, HII

and REG as predictors of mammal richness, without an EH

measure. Due to the large amount of variance explained

by these four variables alone, and the acknowledged high

importance of climatic and, to a lesser extent, regional effects for

global mammal richness (Hawkins et al., 2003; Hortal et al.,

2008), we used multi-predictor models in the remaining analy-

ses. To examine the effect of spatial grain, all models were com-

puted separately for the three grains. Mammal richness was

square-root-transformed and several EH measures were log-

transformed after data exploration (Table 1). If variables con-

tained zero values, we added half of the smallest non-zero value

before log-transformation. Models were computed with all vari-

ables standardized to zero mean, unit variance.

We detected considerable spatial autocorrelation in OLS

model residuals inspecting Moran’s I-based correlograms

(Appendix S1 in Supporting Information). As spatial auto-

correlation violates assumptions of independence and identical

distribution of model residuals, it inflates Type I errors and may

lead to biased model comparison and poor parameter estimates

(Dormann et al., 2007). We therefore accounted for spatial

autocorrelation using simultaneous autoregressive (SAR)

models of the error type, defining the neighbourhood structure

based on the Akaike information criterion (AIC) and minimum

residual spatial autocorrelation (Kissling & Carl, 2007). Spatial

weights matrices for the three grains were based on row stand-

ardization and neighbourhood distances of 150, 300 and 550 km,

respectively. This reduced residual spatial autocorrelation to neg-

ligible levels (Appendix S1). We calculated pseudo-R2 values as

the squared Pearson product–moment correlation coefficient

between observed and predicted values separately for non-spatial

and spatial terms (Kissling & Carl, 2007). SAR models were

implemented with spdep (Bivand, 2014).

We compared the association of EH measures with mammal

richness using the model AIC. As many measures of EH were

correlated, we did not focus on the exact order of measures in

the AIC ranking. Instead, using conditional inference trees

(Hothorn et al., 2006) we determined whether subject area or

the method of calculation of EH measures was more important

for SAR model support. In this binary recursive partitioning

framework, tree splits are based on the strength of association

between the response variable, i.e. ΔAIC of SAR models, and

input variables, i.e. subject area and calculation method. In each

step, the null hypothesis of independence between each input

variable and the response variable is tested. The input variable

having the strongest association with the response variable is

selected according to the corresponding P-value, and in each

step the data are split into two groups based on this input vari-

able. We implemented conditional inference trees with party

(Hothorn et al., 2006), using Monte Carlo testing and a stop

criterion of 0.5. The splitting continued as long as 1 – P

exceeded this stop criterion.

RESULTS

Measures of EH

We detected weak to strong collinearity among EH measures

and even negative correlations, depending on the underlying

variables and methods of calculation (Appendix S2). Spearman

rank correlations ranged from −0.45 to 1.00, with a relatively low

median and mean of absolute correlations of 0.35 and 0.45,

respectively. Accordingly, global maps of EH measures revealed

similar patterns in some cases (e.g. measures of ELE, PET and

TEM; Appendix S3) but also clear differences (Fig. 2). While the

Andean and Himalayan regions were characterized by high cli-

matic and topographic EH (Fig. 2c,e, Appendix S3), large parts

of Eurasia showed high GLC and SOI EH (Fig. 2a,d, Appendix

S3). Measures of vegetation EH were particularly high in tropi-

cal South America, Southeast Asia and Central Africa (Fig. 2b,

Appendix S3).

In the PCA of all 51 measures of EH, 70.7% of global spatial

variation was accounted for by the first three principal compo-

nents (Fig. 3, Appendix S4). The first component, accounting

for 45.1% of the variation, mainly represented measures of cli-

matic and topographic EH (Fig. 3a,b, Appendix S4). The second

component (18.4%) was mainly positively correlated with

measures based on NPP, PLA and VEG (Fig. 3a,c, Appendix S4),

except for negative correlations with some cv and tr measures

based on these variables. While the first component was posi-

tively correlated with mean elevation (rs = 0.48), the second

component was negatively correlated with mean elevation

(rs = −0.44) and positively correlated with mean AET (rs = 0.72).

Consequently, visualization of PCA space on global maps high-

lighted high mountain ranges for the first axis (Fig. 3d) and

regions of high vegetation EH for the second axis (Fig. 3e). The

third component (7.1%) was most strongly positively correlated

with PRE measures and most strongly negatively correlated with

GLC and SOI measures (Fig. 3b,c, Appendix S4). The associated

map (Fig. 3f) opposed areas of particularly high PRE EH to

areas of high soil EH.

The EH–richness relationship

Mammal richness ranged from 7 to 252 species per grid cell at

the 111-km grain (10 to 277 and 12 to 336 species, respectively,

at grains of 222 km and 444 km) and showed a pronounced

increase towards the equator. The highest species richness

occurred in the Andean and Afro-Montane regions, followed by

Southeast Asia (Fig. 3j). Regions with high mammal richness

coincided mainly with regions of high land-cover and vegetation

EH and high values of PRE measures in PCA plots (Fig. 3g–i).

We found clear differences between single- and multi-

predictor SAR models regarding the association of EH

Environmental heterogeneity and mammal species richness
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Table 1 Single- and multi-predictor
simultaneous autoregressive (SAR)
models including environmental
heterogeneity (EH) as a predictor of
mammal species richness at
111 km × 111 km grain. Single-predictor
models include one EH measure each;
multi-predictor models include mean
actual evapotranspiration, annual mean
temperature, biogeographic region,
human influence index, and one EH
measure each (or no EH measure, i.e.
covariables only). Mammal species
richness was square-root-transformed;
EH measures were log-transformed
where indicated.

Subject area EH measure

Single-predictor SAR models Multi-predictor SAR models

ΔAIC R2 b ΔAIC R2 b

Land cover GLC.co 861.61 0.03 0.05*** 830.20 0.64 0.05***
GLC.sh 795.90 0.04 0.05*** 764.35 0.65 0.04***
GLC.si 864.32 0.04 0.04*** 837.99 0.65 0.04***
NPP.co 257.67 0.45 0.12*** 460.29 0.67 0.10***
NPP.cvlog 1068.04 0.05 0.01*** 1030.89 0.63 0.01***
NPP.ra 468.12 0.46 0.10*** 646.48 0.67 0.08***
NPP.sd 309.48 0.28 0.07*** 361.84 0.65 0.06***
NPP.sh 412.81 0.30 0.10*** 579.47 0.67 0.09***
NPP.si 697.01 0.28 0.09*** 798.47 0.68 0.07***
NPP.tr 1076.96 0.02 −0.00* 1054.46 0.63 0.00

Vegetation PLA.co 0.00 0.61 0.55*** 423.22 0.72 0.46***
VEG.co 403.12 0.45 0.09*** 560.94 0.67 0.07***
VEG.cvlog 1081.83 0.00 0.00 1053.61 0.63 0.00
VEG.ma 502.52 0.45 0.09*** 628.03 0.67 0.07***
VEG.me 754.89 0.35 0.08*** 889.67 0.64 0.06***
VEG.ra 506.50 0.45 0.08*** 625.61 0.67 0.07***
VEG.sd 110.06 0.27 0.09*** 277.72 0.66 0.08***
VEG.sh 347.59 0.35 0.10*** 618.43 0.67 0.08***
VEG.si 587.20 0.32 0.09*** 782.43 0.66 0.07***
VEG.tr 698.03 0.21 0.07*** 837.88 0.64 0.05***

Climate PET.co 133.75 0.06 0.08*** 72.21 0.65 0.08***
PET.cvlog 611.28 0.00 0.06*** 492.36 0.66 0.07***
PET.ra 135.01 0.06 0.08*** 74.06 0.65 0.08***
PET.sd 436.03 0.05 0.06*** 368.48 0.64 0.06***
PET.sh 472.10 0.04 0.06*** 416.52 0.64 0.07***
PET.si 735.01 0.03 0.05*** 709.67 0.65 0.04***
PET.trlog 342.81 0.10 0.09*** 290.91 0.64 0.09***
PRE.colog 118.43 0.44 0.10*** 342.73 0.65 0.08***
PRE.cvlog 954.51 0.01 0.03*** 921.86 0.63 0.02***
PRE.ralog 350.94 0.47 0.10*** 495.42 0.68 0.09***
PRE.sdlog 592.87 0.46 0.07*** 695.22 0.66 0.06***
PRE.sh 465.84 0.38 0.06*** 658.83 0.63 0.05***
PRE.si 655.94 0.44 0.05*** 781.12 0.65 0.04***
PRE.trlog 246.41 0.36 0.11*** 348.97 0.68 0.10***
TEM.co 94.34 0.03 0.09*** 3.84 0.65 0.09***
TEM.cv 345.93 0.02 0.06*** 272.38 0.64 0.06***
TEM.ra 91.32 0.03 0.09*** 0.00 0.65 0.09***
TEM.sd 317.33 0.02 0.06*** 260.34 0.64 0.06***
TEM.sh 395.97 0.01 0.07*** 293.05 0.64 0.07***
TEM.si 666.98 0.00 0.05*** 609.73 0.64 0.05***
TEM.trlog 426.27 0.07 0.08*** 378.49 0.65 0.08***

Soil SOI.co 879.91 0.00 0.03*** 856.21 0.64 0.03***
SOI.sh 945.14 0.00 0.02*** 933.67 0.64 0.02***
SOI.si 991.74 0.00 0.01*** 977.40 0.64 0.01***

Topography ELE.co 92.61 0.03 0.09*** 3.35 0.65 0.09***
ELE.cv 425.74 0.04 0.05*** 531.07 0.65 0.04***
ELE.ra 92.10 0.03 0.09*** 1.40 0.65 0.09***
ELE.sd 311.62 0.03 0.06*** 270.80 0.64 0.06***
ELE.sh 330.34 0.02 0.08*** 227.64 0.64 0.08***
ELE.si 616.35 0.01 0.06*** 560.46 0.64 0.06***
ELE.trlog 501.08 0.06 0.08*** 468.73 0.65 0.08***
Covariables only 1053.15 0.63

ΔAIC (difference in the Akaike information criterion between each model and the best model), pseudo
R2 for the non-spatial model term and standardised regression coefficient b are given for each model.
Significance levels: ***P = 0.001; *P = 0.05.
The 10 lowest ΔAIC values per model type are shown in bold.
Abbreviated EH measure names consist of three letters for variable and two letters for calculation
method, for example ELE.sd, standard deviation of elevation.
Variables: ELE, elevation; GLC, land-cover classes; NPP, annual net primary production; PET, mean
annual potential evapotranspiration; PLA, vascular plant species richness; PRE, annual precipitation;
SOI, major soil groups; TEM, annual mean temperature; VEG, canopy height.
Calculation methods: co, count; cv, coefficient of variation; ma, maximum; me, mean; ra, range; sd,
standard deviation; sh, Shannon entropy; si, Simpson index; tr, terrain ruggedness index.

A. Stein et al.
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measures with mammal richness. In single-predictor models at

fine spatial grain, PLA received by far the highest model

support according to AIC, alone explaining 61% of the vari-

ation in mammal richness (Table 1). Next in AIC rank were

the co and ra measures of TEM and ELE, but these models

explained only 3% of the variation in mammal richness. While

the number of precipitation classes gained highest support at

the two coarser grains, the amount of variance explained and

standardized regression coefficients for PLA remained high

(Table 1, Appendix S5). Supporting our observations from

PCA plots, other measures of vegetation EH and NPP also

received relatively high support in single-predictor models,

although they received lower support in multi-predictor

models. The support for PLA was also much lower in multi-

predictor models, in which measures of climatic and topo-

graphic EH had strongest support across all three grains. In

particular, co and ra measures of TEM, PET and ELE had the

highest model support. Measures based on PRE were also rela-

tively well supported. The multi-predictor model that only

accounted for AET, TEM, REG and HII without including EH

explained 63–69% of the variation in mammal richness,

depending on spatial grain (Table 1, Appendix S5). The

amount of variation explained by EH measures alone in addi-

tion to the shared variance explained by the covariables ranged

from 8–12%, being largest at the coarsest grain.

The differences in model support among EH measures were

echoed by conditional inference trees, which revealed a signifi-

cant split between EH subject areas in the first step (Fig. 4).

Climatic and topographic EH were associated with the highest

model support, i.e. the lowest ΔAIC values, across spatial grains.

0 0.5 0.9 1.4 1.8 2.3

Shannon entropy of land cover classes

(a)

1 9 16 24 32 39

Number of canopy height classes

(b)

0 2 4 6 9 11

Standard deviation of temperature

(c)

0 0.5 1 1.4 1.9 2.4

Shannon entropy of soil groups

(d)

13 1568 3123 4677 6232 7787

Elevation range

(e)

Figure 2 Selected maps of environmental heterogeneity (EH) measures at the 111 km × 111 km grain; for a complete set of maps and
additional grains see Appendix 3. (a) Shannon entropy of global land-cover classes; (b) the number of canopy height classes; (c) standard
deviation of temperature; (d) Shannon entropy of major soil groups; (e) elevation range (m a.s.l). Shades represent 10 equal-interval classes
per EH measure according to the legends. Coastal cells and large inland water bodies were excluded to derive equal-area study units for
analysis.
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At the coarsest grain, land-cover EH was also associated with

higher model support than vegetation and soil EH (Fig. 4c). The

second partitioning step separated calculation methods at all

grains, but only for climatic, land-cover and topographic EH at

the coarsest grain (Fig. 4). The co, ra and sd measures were

among the best measures of EH, depending on the underlying

variables and subject areas (Fig. 4, Appendix S5). EH measures

based on cv, si and tr performed poorly overall, although tree

splits for climatic and topographic EH at the finest grain had low

significance (Fig. 4a).

DISCUSSION

We compared a wide range of measures of EH covering five

subject areas, nine variables and nine calculation methods.

Besides some redundancies, we detected distinct differences

between EH measures and their spatial patterns. We also found

highly variable associations of EH measures with mammal rich-

ness, indicating that the choice of EH subject area and calcula-

tion method clearly affects study outcomes.

EH measures

The low correlations and spatial incongruence between several

measures of EH confirms previous findings for topographic

slope measures, i.e. that different calculation methods and data

resolutions can yield varying results (Warren et al., 2004). Dif-

ferent EH measures therefore capture different aspects of EH. Cv

measures in particular were distinct from other calculation
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Figure 3 Principal components analysis (PCA) illustrating the variability and similarities among 51 measures of environmental
heterogeneity (EH) at 111 km × 111 km grain. (a)–(c) The first three PCA axes with the percentage of variance accounted for by each axis
given in parentheses. PCA points represent grid cells; abbreviated EH measure names (slightly shifted for clarity) consist of three letters for
each variable and two letters for each calculation method, for example ELE.sd is the standard deviation of elevation. Variables: ELE,
elevation; GLC, land-cover classes; NPP, annual net primary production; PET, mean annual potential evapotranspiration; PLA, vascular
plant species richness; PRE, annual precipitation; SOI, major soil groups; TEM, annual mean temperature; VEG, canopy height. Calculation
methods: co, count; cv, coefficient of variation; ma, maximum; me, mean; ra, range; sd, standard deviation; sh, Shannon entropy; si,
Simpson index; tr, terrain ruggedness index. (d)–(f) Spatial visualization of PCA results. Shades of grid cells are based on PCA axis scores
of the first three axes, representing 10 equal-interval classes per PCA axis according to the legends. (g)–(i) PCA as in (a)–(c), where PCA
points are shaded according to mammal species richness in the relevant grid cells (legend in j). (j) Mammal species richness per grid cell
(10 equal-interval classes).
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methods and negatively correlated with some EH measures,

probably because low means of variables like NPP and VEG

resulted in low ra and sd, but high cv values (e.g. in the Sahara;

Appendix S3).

The close similarities among other EH measures (Appendices

S2 & S3) make sense as many underlying variables are interde-

pendent, e.g. ELE, TEM and PET. A close relationship between

vegetation structure and plant diversity, NPP and land-cover

classes, as found here, is also expected based on theory and

previous findings (e.g. MacArthur & MacArthur, 1961; Kissling

et al., 2008). Higher plant diversity is often associated with a

more complex vegetation structure (MacArthur & MacArthur,
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Figure 4 Conditional inference trees
illustrating the effect of subject area and
method of calculating environmental
heterogeneity (EH) measures on
ΔAIC-based model support in
multi-predictor simultaneous
autoregressive (SAR) models. Splits in
conditional inference trees are based on
the strength of association between the
response variable, ΔAIC, and the input
variables, subject area and calculation
method. In each step the data are split
into two groups based on the input
variable with the strongest association
with ΔAIC according to a P-value.
Conditional inference trees are based on
models from three spatial grains: (a)
111 km × 111 km, (b) 222 km × 222 km,
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plots represent the interquartile range
around the median ΔAIC (boxes).
Whiskers extend to extreme data points
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1961), while NPP and GLC are partly based on vegetation types.

Similarly, several calculation methods are closely related to each

other (consider, for example, elevation range and number of

elevation classes). High collinearity has also been found for

measures of topographic complexity involving elevation, slope

and aspect, necessitating a careful selection of measures for

analysis (Bouchet et al., 2014).

The EH–richness relationship

Differences in model support among EH subject areas and

between single- and multi-predictor models were striking. The

exceptionally high amount of variance explained by PLA

(61%), the strongest EH measure in single-predictor models,

might be attributed to a functional response of mammal

richness to higher resource diversity and structural complexity.

However, the importance of vegetation EH clearly decreased in

multi-predictor models, most likely due to adding AET as a

covariable. PLA as well as co and ra measures of NPP were

particularly strongly correlated with AET (rs between 0.74 and

0.79; rs ≤ 0.7 for all other EH measures), making it difficult to

tease apart their individual effects. AET is a strong predictor of

global plant species richness (Kreft & Jetz, 2007). As it is also

the main driver of broad-scale mammal richness (e.g. Ruggiero

& Kitzberger, 2004; Qian, 2010; Torres-Romero &

Olalla-Tárraga, 2015), AET probably captured much of the

variation in multi-predictor models that was captured by veg-

etation and NPP EH in single-predictor models. The higher

standardized regression coefficient of AET (median b = 0.21)

compared with most measures of EH (median b = 0.07;

Table 1) in multi-predictor models confirms the high impor-

tance of water–energy availability for mammal richness. A

structural equation model suggests that the effect of PLA

on mammal richness is mainly indirect and mediated

by AET (Appendix S6). This confirms previous findings that

broad-scale plant–mammal (Hawkins & Pausas, 2004) or, more

generally, producer–consumer richness relationships (Jetz et al.,

2009) are mainly due to both groups responding to the same

environmental gradients. However, direct effects of plant rich-

ness on mammal richness have also been found, varying in

strength between spatial scales and mammal guilds (e.g. Qian

et al., 2009; Qian & Kissling, 2010). In addition to present-day

ecological effects, PLA might also be related to mammal rich-

ness through co-evolutionary mechanisms (Jetz et al., 2009).

Disentangling ecological from historical and evolutionary

mechanisms is a major challenge for future EH–richness

research and should help to separate direct from indirect

effects.

Measures of climatic and topographic EH gained high

support in both single- and multi-predictor models. The fact

that conditional inference trees generally favoured climatic and

topographic EH over land-cover, soil and vegetation EH in the

first tree split (Fig. 4) indicates that the choice of subject area

affects model support more than the choice of calculation

method. The importance of climatic EH for mammal richness is

in line with the high importance of climate for broad-scale

vertebrate richness (Hawkins et al., 2003; Field et al., 2009). In

contrast, few mammal species depend directly on specific soil

types, for example for burrowing (Skinner & Chimimba, 2005),

which probably explains the lower model support for soil EH.

However, results could be biased in favour of climatic EH

because sample size was higher than for the other subject areas

(21 climatic EH, 10 land-cover and vegetation EH, 3 soil EH

measures), as not all calculation methods could be applied to

categorical variables and more meaningful variables were avail-

able for climate at a global extent. In contrast to climatic EH,

topographic EH probably gained high model support because

it incorporates multiple factors promoting species richness,

including ecological, historical and evolutionary aspects. Firstly,

topographic EH is a proxy for EH in various conditions that

should foster species coexistence, including (micro-)climate,

soil, hydrology and vegetation (Moeslund et al., 2013; Bouchet

et al., 2014). Secondly, topographically heterogeneous areas

promote species diversification and persistence through isola-

tion and provision of refuges (Hughes & Eastwood, 2006;

Svenning & Skov, 2007). The importance of climatic and topo-

graphic EH for species richness may, however, vary between

regions in association with other variables such as energy avail-

ability, as shown for North American mammals (Kerr & Packer,

1997).

Interestingly, land-cover EH, which is frequently used in

EH–richness studies, received less support than climatic and

topographic EH, at least at the two finer grains. Theoretically,

high land-cover EH promotes species richness, as it allows

species with different habitat requirements to coexist (but see

Allouche et al., 2012). It is, however, difficult to define and

measure habitat diversity, mostly because what is perceived as

habitat varies strongly between organisms (Triantis et al., 2005).

A single land-cover classification as used here is unlikely to

represent relevant habitat types for all studied mammal species.

Furthermore, GLC and similar remote sensing datasets are not

sufficiently resolved to reflect all (micro)habitats. It is therefore

challenging to establish meaningful measures of land-cover EH

at broad spatial and taxonomic scales.

Our findings certainly depend on the large spatial extent and

grains of our analysis. Spatial extent affects the outcomes of

species–richness research (e.g. Qian, 2010), and spatial grain

greatly influences the measurability of EH and its importance

for species richness (Whittaker et al., 2001; Stein et al., 2014).

While we accounted for this by analysing three different grain

sizes, the underlying data did not allow us to consider grains

finer than 111 km. We expect climatic and topographic EH to

become less important and vegetation and soil EH to become

more important at finer scales, where climate and topography

vary less and biotic interactions play a larger role (Pearson &

Dawson, 2003; Field et al., 2009). Previous smaller-scale studies

found particularly strong effects of vegetation EH for mammal

richness compared with climatic and topographic EH (Fraser,

1998; Qian & Kissling, 2010). Here, we found only minor dif-

ferences between the analysed grain sizes, probably because all

three were quite coarse. Still, multi-predictor models indicated

an increasing trend in variance explained by EH with increasing

A. Stein et al.
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grain, consistent with previous findings (Fraser, 1998; Rahbek &

Graves, 2001). Coarser grains have generally been found to be

associated with stronger EH–richness relationships (Stein et al.,

2014), which makes sense because coarser grains usually

entail larger within-cell variability in environmental conditions

(Fraser, 1998). Additionally, allopatric speciation and species

turnover mediated by EH should become more important

drivers of species richness at coarser grains, whereas the adverse

fragmentation effects associated with high EH may be most

significant at fine spatial scales (Laanisto et al., 2013). Also, the

detected differences in model support between calculation

methods may partly be explained by spatial scale. Co and ra

measures appear to be useful proxies of EH at the broad scale

studied here. In contrast, cv and si measures, which received low

support in our study, have received high support for other vari-

ables and taxa at smaller spatial scales (e.g. Fraser, 1998; Ricklefs

& Lovette, 1999). While spatial scales other than those studied

here are thus likely to yield different results, the choice of EH

measures should still play a crucial role in determining study

outcomes.

We analysed all terrestrial mammals together; results from

separate analyses of individual mammal groups would likely

produce different results, as the strength of EH–richness rela-

tionships should depend on body size, range size, vagility,

trophic group and habitat perception (Tews et al., 2004; Triantis

et al., 2005). For instance, vegetation EH should particularly

promote richness in arboreal and herbivorous mammals (e.g.

Andrews & O’Brien, 2000). However, spatial scale is also likely to

affect the outcomes of cross-group comparisons (Qian et al.,

2009), so generalizations should be made cautiously.

Although we calculated many measures of EH, more detailed

indices and multivariate measures could be computed (e.g.

McElhinny et al., 2005; Bouchet et al., 2014) that may be more

comprehensive and informative about the underlying processes.

Data availability for many more detailed measures, such as

foliage height diversity, is thus far limited to small spatial

extents, but advancements in remote sensing techniques might

soon allow broad-scale calculation of measures of vegetation

structure (Goetz et al., 2010). While different measures of EH

are expected to represent different mechanisms that influence

species richness, it is hard to actually identify these mechanisms.

As more detailed data become available, the use of measures that

reflect actual functions of environmental variables, for example

measures representing the effects of topographic EH on insola-

tion or moisture, should promote greater understanding of

EH–richness relationships (Moeslund et al., 2013).

CONCLUSIONS

While some measures of EH are largely redundant, others

exhibit strong spatial incongruence, making it worthwhile to

include multiple measures in EH–richness research. EH and

EH–richness relationships are inherently complex, and we

showed that results of EH–richness analyses using common

macroecological modelling approaches are sensitive to the

choice of the method of calculation and the variable represent-

ing EH as well as to the statistical approach. Measures of climatic

and topographic EH and count and range measures received the

highest model support when accounting for effects of current

climate, biogeographic region and human influence, thus rep-

resenting more useful proxies of EH at a global extent and coarse

grain than measures based on coefficient of variation or

Simpson index. Measures of EH should be chosen carefully

according to taxon, spatial scale, study system and mechanism of

interest, and not merely based on convention or convenience. A

selective comparison of multiple EH measures in the context of

each EH–species richness study should promote better under-

standing and generalizations about the importance of EH for

species richness.
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